Serveur d'exploration sur la détoxication des champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mercury resistance and mercuric reductase activities and expression among chemotrophic thermophilic Aquificae.

Identifieur interne : 001994 ( Main/Exploration ); précédent : 001993; suivant : 001995

Mercury resistance and mercuric reductase activities and expression among chemotrophic thermophilic Aquificae.

Auteurs : Zachary Freedman [États-Unis] ; Chengsheng Zhu ; Tamar Barkay

Source :

RBID : pubmed:22773655

Descripteurs français

English descriptors

Abstract

Mercury (Hg) resistance (mer) by the reduction of mercuric to elemental Hg is broadly distributed among the Bacteria and Archaea and plays an important role in Hg detoxification and biogeochemical cycling. MerA is the protein subunit of the homodimeric mercuric reductase (MR) enzyme, the central function of the mer system. MerA sequences in the phylum Aquificae form the deepest-branching lineage in Bayesian phylogenetic reconstructions of all known MerA homologs. We therefore hypothesized that the merA homologs in two thermophilic Aquificae, Hydrogenobaculum sp. strain Y04AAS1 (AAS1) and Hydrogenivirga sp. strain 128-5-R1-1 (R1-1), specified Hg resistance. Results supported this hypothesis, because strains AAS1 and R1-1 (i) were resistant to >10 μM Hg(II), (ii) transformed Hg(II) to Hg(0) during cellular growth, and (iii) possessed Hg-dependent NAD(P)H oxidation activities in crude cell extracts that were optimal at temperatures corresponding with the strains' optimal growth temperatures, 55°C for AAS1 and 70°C for R1-1. While these characteristics all conformed with the mer system paradigm, expression of the Aquificae mer operons was not induced by exposure to Hg(II) as indicated by unity ratios of merA transcripts, normalized to gyrA transcripts for hydrogen-grown AAS1 cultures, and by similar MR specific activities in thiosulfate-grown cultures with and without Hg(II). The Hg(II)-independent expression of mer in the deepest-branching lineage of MerA from bacteria whose natural habitats are Hg-rich geothermal environments suggests that regulated expression of mer was a later innovation likely in environments where microorganisms were intermittently exposed to toxic concentrations of Hg.

DOI: 10.1128/AEM.01060-12
PubMed: 22773655
PubMed Central: PMC3426723


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mercury resistance and mercuric reductase activities and expression among chemotrophic thermophilic Aquificae.</title>
<author>
<name sortKey="Freedman, Zachary" sort="Freedman, Zachary" uniqKey="Freedman Z" first="Zachary" last="Freedman">Zachary Freedman</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
<settlement type="city">New Brunswick (New Jersey)</settlement>
</placeName>
<orgName type="university">Université Rutgers</orgName>
</affiliation>
</author>
<author>
<name sortKey="Zhu, Chengsheng" sort="Zhu, Chengsheng" uniqKey="Zhu C" first="Chengsheng" last="Zhu">Chengsheng Zhu</name>
</author>
<author>
<name sortKey="Barkay, Tamar" sort="Barkay, Tamar" uniqKey="Barkay T" first="Tamar" last="Barkay">Tamar Barkay</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22773655</idno>
<idno type="pmid">22773655</idno>
<idno type="doi">10.1128/AEM.01060-12</idno>
<idno type="pmc">PMC3426723</idno>
<idno type="wicri:Area/Main/Corpus">001959</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001959</idno>
<idno type="wicri:Area/Main/Curation">001959</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001959</idno>
<idno type="wicri:Area/Main/Exploration">001959</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mercury resistance and mercuric reductase activities and expression among chemotrophic thermophilic Aquificae.</title>
<author>
<name sortKey="Freedman, Zachary" sort="Freedman, Zachary" uniqKey="Freedman Z" first="Zachary" last="Freedman">Zachary Freedman</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
<settlement type="city">New Brunswick (New Jersey)</settlement>
</placeName>
<orgName type="university">Université Rutgers</orgName>
</affiliation>
</author>
<author>
<name sortKey="Zhu, Chengsheng" sort="Zhu, Chengsheng" uniqKey="Zhu C" first="Chengsheng" last="Zhu">Chengsheng Zhu</name>
</author>
<author>
<name sortKey="Barkay, Tamar" sort="Barkay, Tamar" uniqKey="Barkay T" first="Tamar" last="Barkay">Tamar Barkay</name>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="eISSN">1098-5336</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Bacteria (drug effects)</term>
<term>Bacteria (enzymology)</term>
<term>Bacteria (growth & development)</term>
<term>Bacteria (metabolism)</term>
<term>Drug Resistance, Bacterial (MeSH)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Mercury (metabolism)</term>
<term>Mercury (toxicity)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxidoreductases (metabolism)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
<term>Temperature (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alignement de séquences (MeSH)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Bactéries (croissance et développement)</term>
<term>Bactéries (effets des médicaments et des substances chimiques)</term>
<term>Bactéries (enzymologie)</term>
<term>Bactéries (métabolisme)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Mercure (métabolisme)</term>
<term>Mercure (toxicité)</term>
<term>Oxidoreductases (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Résistance bactérienne aux médicaments (MeSH)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Température (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Mercury</term>
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Bactéries</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Bacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Bactéries</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Bactéries</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Bacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Bacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Bacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Bactéries</term>
<term>Mercure</term>
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="toxicity" xml:lang="en">
<term>Mercury</term>
</keywords>
<keywords scheme="MESH" qualifier="toxicité" xml:lang="fr">
<term>Mercure</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Drug Resistance, Bacterial</term>
<term>Gene Expression Profiling</term>
<term>Molecular Sequence Data</term>
<term>Oxidation-Reduction</term>
<term>Sequence Alignment</term>
<term>Sequence Homology, Amino Acid</term>
<term>Temperature</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Analyse de profil d'expression de gènes</term>
<term>Données de séquences moléculaires</term>
<term>Oxydoréduction</term>
<term>Résistance bactérienne aux médicaments</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Séquence d'acides aminés</term>
<term>Température</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Mercury (Hg) resistance (mer) by the reduction of mercuric to elemental Hg is broadly distributed among the Bacteria and Archaea and plays an important role in Hg detoxification and biogeochemical cycling. MerA is the protein subunit of the homodimeric mercuric reductase (MR) enzyme, the central function of the mer system. MerA sequences in the phylum Aquificae form the deepest-branching lineage in Bayesian phylogenetic reconstructions of all known MerA homologs. We therefore hypothesized that the merA homologs in two thermophilic Aquificae, Hydrogenobaculum sp. strain Y04AAS1 (AAS1) and Hydrogenivirga sp. strain 128-5-R1-1 (R1-1), specified Hg resistance. Results supported this hypothesis, because strains AAS1 and R1-1 (i) were resistant to >10 μM Hg(II), (ii) transformed Hg(II) to Hg(0) during cellular growth, and (iii) possessed Hg-dependent NAD(P)H oxidation activities in crude cell extracts that were optimal at temperatures corresponding with the strains' optimal growth temperatures, 55°C for AAS1 and 70°C for R1-1. While these characteristics all conformed with the mer system paradigm, expression of the Aquificae mer operons was not induced by exposure to Hg(II) as indicated by unity ratios of merA transcripts, normalized to gyrA transcripts for hydrogen-grown AAS1 cultures, and by similar MR specific activities in thiosulfate-grown cultures with and without Hg(II). The Hg(II)-independent expression of mer in the deepest-branching lineage of MerA from bacteria whose natural habitats are Hg-rich geothermal environments suggests that regulated expression of mer was a later innovation likely in environments where microorganisms were intermittently exposed to toxic concentrations of Hg.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22773655</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>12</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5336</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>78</Volume>
<Issue>18</Issue>
<PubDate>
<Year>2012</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Mercury resistance and mercuric reductase activities and expression among chemotrophic thermophilic Aquificae.</ArticleTitle>
<Pagination>
<MedlinePgn>6568-75</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/AEM.01060-12</ELocationID>
<Abstract>
<AbstractText>Mercury (Hg) resistance (mer) by the reduction of mercuric to elemental Hg is broadly distributed among the Bacteria and Archaea and plays an important role in Hg detoxification and biogeochemical cycling. MerA is the protein subunit of the homodimeric mercuric reductase (MR) enzyme, the central function of the mer system. MerA sequences in the phylum Aquificae form the deepest-branching lineage in Bayesian phylogenetic reconstructions of all known MerA homologs. We therefore hypothesized that the merA homologs in two thermophilic Aquificae, Hydrogenobaculum sp. strain Y04AAS1 (AAS1) and Hydrogenivirga sp. strain 128-5-R1-1 (R1-1), specified Hg resistance. Results supported this hypothesis, because strains AAS1 and R1-1 (i) were resistant to >10 μM Hg(II), (ii) transformed Hg(II) to Hg(0) during cellular growth, and (iii) possessed Hg-dependent NAD(P)H oxidation activities in crude cell extracts that were optimal at temperatures corresponding with the strains' optimal growth temperatures, 55°C for AAS1 and 70°C for R1-1. While these characteristics all conformed with the mer system paradigm, expression of the Aquificae mer operons was not induced by exposure to Hg(II) as indicated by unity ratios of merA transcripts, normalized to gyrA transcripts for hydrogen-grown AAS1 cultures, and by similar MR specific activities in thiosulfate-grown cultures with and without Hg(II). The Hg(II)-independent expression of mer in the deepest-branching lineage of MerA from bacteria whose natural habitats are Hg-rich geothermal environments suggests that regulated expression of mer was a later innovation likely in environments where microorganisms were intermittently exposed to toxic concentrations of Hg.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Freedman</LastName>
<ForeName>Zachary</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhu</LastName>
<ForeName>Chengsheng</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Barkay</LastName>
<ForeName>Tamar</ForeName>
<Initials>T</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>07</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.16.-</RegistryNumber>
<NameOfSubstance UI="C021551">mercuric reductase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>FXS1BY2PGL</RegistryNumber>
<NameOfSubstance UI="D008628">Mercury</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001419" MajorTopicYN="N">Bacteria</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024881" MajorTopicYN="Y">Drug Resistance, Bacterial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008628" MajorTopicYN="N">Mercury</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000633" MajorTopicYN="Y">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="N">Oxidoreductases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013696" MajorTopicYN="N">Temperature</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>7</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>7</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>12</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22773655</ArticleId>
<ArticleId IdType="pii">AEM.01060-12</ArticleId>
<ArticleId IdType="doi">10.1128/AEM.01060-12</ArticleId>
<ArticleId IdType="pmc">PMC3426723</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1982 Mar 10;257(5):2498-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6277900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2010 May 14;398(4):555-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20303978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2009 Mar;191(6):1992-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19136599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2009 Jan;67(1):118-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19120462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1989 Jul;55(7):1735-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16347966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Ind Microbiol Biotechnol. 2005 Dec;32(11-12):587-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16133099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2011 Nov;324(2):106-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22092810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1998 Apr;64(4):1328-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9546169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Appl Microbiol. 2005;57:1-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16002008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2005 Aug 30;44(34):11402-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16114877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Manage. 2005 Feb;74(3):283-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15644268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1982 Aug;151(2):962-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6212579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2003 Jun;27(2-3):355-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12829275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2003 Jun;27(2-3):145-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12829265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Basic Microbiol. 2011 Aug;51(4):364-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21656800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2001 May 1;29(9):e45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11328886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comp Biochem Physiol A Mol Integr Physiol. 2002 Nov;133(3):689-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12443926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2004 Oct;48(3):300-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15692850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1983 Jan;45(1):265-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16346171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2006 Oct;8(10):1746-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16958755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 1996 Feb;142 ( Pt 2):337-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8932707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 1999 Jun;51(6):730-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10422221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 1986;40:607-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3535655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1977 Mar;129(3):1227-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">403173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2005 Dec;71(12):8836-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16332880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2008 Sep;73(4):587-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18653209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2004 Sep 24;575(1-3):86-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15388338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Extremophiles. 2007 May;11(3):469-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17401541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2003 Jun;27(2-3):313-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12829273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2007 Aug 3;371(1):79-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17560604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1990 Oct;56(10):3006-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2126698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2555-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15671178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2004 Jun;52(5):1475-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15165248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Evol Microbiol. 2004 Jan;54(Pt 1):175-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14742477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2004 Jan;186(2):427-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14702312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Chem. 2001 Dec;26(1):51-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11765852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2009 Apr;11(4):950-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19170726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2005 Jan;71(1):220-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15640191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2011 Nov;62(4):739-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21713435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 1995 Oct;4(5):605-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7582168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2010 Nov;12(11):2904-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20545753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2007 Sep;1(5):453-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18043664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2006 Oct;188(20):7141-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17015653</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>New Jersey</li>
</region>
<settlement>
<li>New Brunswick (New Jersey)</li>
</settlement>
<orgName>
<li>Université Rutgers</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Barkay, Tamar" sort="Barkay, Tamar" uniqKey="Barkay T" first="Tamar" last="Barkay">Tamar Barkay</name>
<name sortKey="Zhu, Chengsheng" sort="Zhu, Chengsheng" uniqKey="Zhu C" first="Chengsheng" last="Zhu">Chengsheng Zhu</name>
</noCountry>
<country name="États-Unis">
<region name="New Jersey">
<name sortKey="Freedman, Zachary" sort="Freedman, Zachary" uniqKey="Freedman Z" first="Zachary" last="Freedman">Zachary Freedman</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/DetoxFungiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001994 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001994 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    DetoxFungiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22773655
   |texte=   Mercury resistance and mercuric reductase activities and expression among chemotrophic thermophilic Aquificae.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22773655" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a DetoxFungiV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 16:09:04 2020. Site generation: Fri Nov 20 16:15:24 2020